Skip to contents

The OMs function is used both to create and modify an OMs-class() object. and to access and assign OMs for an object of class Slick-class(). See Details.

Usage

OMs(Factors = data.frame(), Design = data.frame(), Preset = list())

OMs(object) <- value

# S4 method for class 'missing'
OMs()

# S4 method for class 'dataframe_list'
OMs(Factors = data.frame(), Design = data.frame(), Preset = list())

# S4 method for class 'Slick'
OMs(Factors)

# S4 method for class 'Slick'
OMs(object) <- value

Arguments

Factors

A data.frame with column headings Factor, Level, and Description. See Details

Design

A data.frame with nFactor columns (i.e., length(unique(Factors$Factor))), and nOM rows. See Details

Preset

An optional named list for the preset buttons in the App(). The name of the list element will appear as a button in the App().. See Details and `Examples

object

A Slick-class() object

value

A OMs-class() object

Details

Factors

Factors can be accessed and assigned using Factors(myslick) and Factors(myslick) <- data.frame() respectively.

The Factor column should be character strings with the name of each factor, while the Level column is a numeric or character value with the level for the corresponding factor.

The Description column is a description for each row, i.e., a unique factor and level. See Examples.

Design

The Design matrix is nOM rows and nFactor columns. The values in each column should either be numeric values indicating the levels for the corresponding factor, or the actual level values (i.e., Factors$Level) that correspond to each OM. See Examples.

Preset

For OMs objects, Preset should be a named list, where each list element represents a different preset button to be shown in the app by the name of the list element, and each named list element should be a list of length nFactors, with the list elements for each Factor containing numeric values indicating the levels to include for that factor. See Examples

Use Factors(), Design(), and Preset() to access and assign the values for an existing OMs object, see Examples.

Functions

  • OMs(missing): Create an empty OMs object

  • OMs(dataframe_list): Create a populated OMs object

  • OMs(Slick): Return an OMs-class() object from a Slick() object

  • OMs(Slick) <- value: Assign an OMs-class() object to a Slick() object

Examples


# Create Object
oms <- OMs()

# Specify Factors
Factors(oms) <- data.frame(Factor='M',
                           Level=c('Base', 'Low M', 'High M'),
                           Description=c('Base Case',
                                         'Lower Natural Mortality',
                                         'Higher Natural Mortality')
)

Factors(oms)
#>   Factor  Level              Description
#> 1      M   Base                Base Case
#> 2      M  Low M  Lower Natural Mortality
#> 3      M High M Higher Natural Mortality

# OM Design

Design(oms) <- data.frame(M=c('Base', 'Low M', 'High M'))

# Add names for OMs
rownames(Design(oms)) <- c('Base Case', 'Less Productive', 'More Productive')

Design(oms)
#>                      M
#> Base Case         Base
#> Less Productive  Low M
#> More Productive High M

# Preset

Preset(oms) <- list('Base Case'=list(1),
                    'Low M' = list(2),
                    'High M' = list(3),
                    'All'= list(1:3)
)

# Create Slick Object
myslick <- Slick()

# Add OMs to Slick Object
OMs(myslick) <- oms